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Shallow water waves on shear flows 

By N. C. FREEMAN AND R. S .  JOHNSON 
School of Mathematics, University of Newcastle upon Tyne 

(Received 7 November 1969) 

An equation for waves on the surface of a flow with shear is deduced and shown 
to reduce by suitable scaling to the classical equation of Korteweg & de Vries, 
which describes such motions on a stationary flow. For steady flows the corre- 
sponding theory of cnoidal waves is obtained and the results of Benjamin (1962) 
for a solitary wave recovered. 

1. Introduction 
Several years ago, Benjamin (1962) showed that it was possible to generalize 

the classical solitary wave theory (Lamb 1953, ch. 3, pp. 423-427) to waves on 
moving water with shear. Recent developments in the theory of asymptotic 
matching have shown how to place the classical cnoidal wave theory, of which 
the solitary wave is a particular case, in the context of far field solutions of 
linearized shallow water wave theory (Cole 1968, ch. 5, pp. 248-256). A scaling 
can be developed which reduces the equations of motion in the far field limit 
to a single equation, the Korteweg-de Vries equation (Korteweg & de Vries 1895). 

In the present paper, it will be shown how it is possible to do this for waves 
arising on a flow with shear. In the particular case of steady flow a generalized 
theory of cnoidal waves is deduced which in one case gives the solitary wave 
deduced by Benjamin (1962). 

The original linearized theory of long waves on shear flow was given by Burns 
(1953), where it was shown that the wave propagation speeds C on a shear flow 

where h is the depth. 
To obtain a far-field theoryit is necessary to consider perturbations to the equa- 

tions of motion for large times when the time rates of change are small compared 
with the rates of change in co-ordinates moving with the wave. The resulting 
equations are then non-linear, although by suitable manipulation they can be 
reduced to one equation for the variation of the surface elevation. Once a solution 
of this equation has been obtained the variation of the flow parameters over the 
rest of the flow field can be deduced. The solutions of this Korteweg-de Vries 
equation are now well understood from the work of Kruskal and others (see 
Zabusky 1967), but reduction to tractable analytic results appears possible only 
for steady motions. 
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y‘=h Surface 

y’=O’ Bottom * - 

2. The equations of motion 
The wave motion to be discussed will be assumed to occur in two dimensions 

on an inviscid incompressible fluid. It is convenient to start from the unsteady 
equations of motion in two dimensions for conservation of momentum and mass. 
Space co-ordinates x’ and y‘ will be chosen parallel and perpendicular to the 
surface of the undisturbed flow which is assumed to have a velocity in the x’ 
direction U’(9’). The undisturbed surface of the flow will be denoted by y’ = h 
and the bottom by y‘ = 0 (figure 1). 

If u‘ and v’ are the components of velocity in the x’ and y’ directions the 
equations are 

where p’ is the (constant) density, p‘ the pressure and g the gravitational accelera- 
tion. 

The boundary conditions on the surface, y’ = h + ~’(x’, t ’ ) ,  are constant surface 
pressure 

and continuity of surface velocity and fluid velocity 

p’(x‘, h +T‘(x’, t’), t ’ )  = Ph (say), (2.4) 

I ’  alli a?’ v (x , h+q’(x’, t’), t’) = 7 +u‘ ~ 

at 8X’ * 
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On the bottom only one condition is required for an inviscid flow 

v’ = 0 on y’ = 0. (2.6) 

Since the initial equations (2.1)-(2.3) contain only derivatives of p ,  a more 
convenient form of (2.4) is 

Non-dimensionalization of these equations can be obtained by use of the scale 
parameters L, the length scale of a typical wave motion, h the depth and a typical 
velocity c = J(gh). The non-dimensional variables are chosen as follows: 

(2.8) 
V’S v = -  p = -  U’ p f  u = -  

L ,  y = h ’  t = -  L’ h’ C ’  

2’ Y’ ct’ x = -  
c ’  pc2’ 

where 6 = h/L. 
It will be observed that variations along the surface are assumed to occur on 

a length scale L where as variations normal to the surface occur on a scale h. 
It has been found convenient to introduce the non-dimensional parameter h/L 
into the scaling of the transverse velocity. 

The equations (2.1)-(2.7) then reduce to 

with 

au au v au ap 
-+u-+--+- = 0, 
at ax ax 

av a v  v av ap 
- + u - + - - + - + 1 =  0, 
at ax m y  a9 

au 1 av -+-- = 0 
ax m y  ’ 

(2.10) 

(2.11) 

(2.12) 

and v = O  on y = O .  (2.13) 

The approximation of long waves on shallow water then requires that S < 1. 
It should be noted that the scaling of v’ introduced into (2.8) shows that v‘ is 
taken to be large in the theory. 

The primary flow will be assumed to be of the form u = lJ(y). 
A wave motion of small amplitude defined by a parameter e is now assumed 

I u = U+€U,  

v = €221, 

p =P+@, 
7 = €7, 

to occur. We write 

where P = Po - (y- 1) where Po = Ph/(pc2). 

sionalized. 
P is the hydrostatic pressure variation due 

(2.14) 

to gravity suitably non-dimen- 
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Two small parameters 6 and E have now been introduced. For a non-trivial 
limit 6 -+ 0, G -+ 0 it is now necessary to assume that 

a2 = O(s) or d2 = Ks. (2.15) 

This may be written ah2/h3 = O( 1) where a is the amplitude and h the wavelength 
of the wave, a result recognized by Korteweg & de Vries (1895). It will now be 
observed that although v’ was assumed large the actual perturbation to v‘ is 
order €8 as opposed to a perturbation to the u component of velocity relative to 
the undisturbed flow of magnitude 8. 

Substituting the new variable of (2.14) into the equations of motion (2.9)- 
(2.13) gives 

au .au aii n E au aj i  
- + + - + G e u - + + U ’ + E - - + -  = o  
at 32 ax K K a y  ax ’) 

au 1 av -+-- = 0 
ax K a y  ’ 

(2.16) 

and V = O  on y = O .  

No approximation has been introduced so far, but it is clear that all the non- 
linear terms in (2.16) and (2.17) are of order e. Henceforth U‘ will be used to 
denote dUldy .  

3. Linearized theory 
The small disturbance theory of Burns (1953) may now be readily deduced 

by taking the limit e +. 0 in (2.17). The resulting equations, which are linear, are 

with 

and 

I au 1 an 
ax Kay 
-+-- == 0 

V = O  on y = O .  
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Reduction of these equations to a single equation is complicated and not 
necessary for our purpose. We shall seek a wave motion propagation at  a velocity 
C only. For such a wave a/at = - C(a/ax) and the steady equations become 

with 

and 

where 

az v a? 
ax K ax (U-C)-+-  U'+- = 0, 

az 1 aii -+-- = 0, 
ax K a y  

V = K(U1-- C) (d?j/dx) on y = 1, 

Z = 0  on y = O ,  

u, = U(1). 

(3.3) 

(3.4) 

The pressure has been assumed constant with depth in accordance with the 

The continuity equation can be integrated to give 
second of equations (3.1). 

and the momentum equation can then be rewritten 

Integration of this equation yields 

and differentiation gives 

This result will be writ,ten 
a 

ii = -7- (W12),  
aY 

where W = U - C and 

From (3.5), 
21 K = ?jZWI2, 

(3.5) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

where li, = dv/dx .  
Comparing this with (3.4) shows that the propagation speed C must satisfy 

IZl,=, = 1 ,  

or (3.11) 

This formula was originally derived by Burns (1953), where some of the properties 
of the propagation velocity C are discussed. In particular, it may be noted that 
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for 0 < U(0)  < U(y) < U(1), lJ"(y) < 0, there are two values of C, one of which 
is greater than U(1) and the other less than O(0). The wave motion is now 
determined in terms of the arbitrary function ~ ( x ) .  

We may expect that any attempt to improve upon this approximation will 
lead to a non-uniformity in the expansion scheme as in the case of U = 0 which 
is a particular case of the present theory. To overcome this difficulty it is necessary 
to reconsider the theory in regions where t = O(6-l). 

4. The far field theory 
In the far field t = O(e-l), we introduce new time and space variables, 

- 
t = E t ,  (4.1) 

(4.2) and Z = x-Ct,  g = y, 

where C is the propagation velocity of the linearized theory as defined by (3.11). 
The variables are assumed to be of order unity so that time rates of change will 
be small compared with space rates of change following the linearized wave. 
The space and time derivatives become 

Substituting in (2.16) gives 

au v ap r u  au v a,] 
(U-C)-+-  U'+-+€ -=+u-+-- = 0) az K ax at az K a y  

~ + E ( U - c ) - + € 2  av [;; -+E-+-- av v av] = 0, a@ ax all: Kajj 

J a 5  1 av -+-= = 0) az Kay 

with 

(4.4) 

and V = O  on g=O.  

It is now obvious that the zeroth-order equations obtained by letting e + 0 
now correspond exactly with those derived in $3. The function q(x, t )  is not 
however arbitrarily determined. To observe this it is necessary to go to a higher 
approximation. We formally expand the dependent variables as follows: 

5 = U0+EU1+ ...,) 
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- 
y =  1, 

ax 

407 

(4.7) 

and v o =  0 on j j =  0. 

of the unknown function qo(x, Q ,  as follows: 
These are the equations of' 8 3 and their solution may be written down in terms 

(4.9) 

The second-order equations are more complex, and may be written as follows: 

u o  = - TO(a/@) (W121, 
VO = G O Z  w4, 
Po = l o .  

a%, au, -+-((U-C)+u 
at ax 

(4.10) ax 

and w , = O  on y = O .  

The pressure may be determined explicitly from (4.10) as 

(4.12) 

Rewriting % ( U - C ) + v l E  U' as - 
az 

the first equation of (4.10) may then be integrated from y = 0 to y = 1 to give 
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The equation (4.14) is now solely an equation for the function q0(Z, f). It may be 
simplified to give 

2131?OT - 3 1 4 ~ T ~ T ~ 5 - T ~ Z Z Z J K  = o, (4.15) 

where In1 = & ( ' I 7  

Equation (4.15) is the Korteweg-de Vries equation (Cole 1968) with the 
coefficients modified to include the effect of shear. In  the case of no basic flow 
U = 0. Equation (3.11) gives C = 1,  and (4.15) reduces to 

2 ~ 0 ~  t- 3 ~ 0 ~ o j - +  QKTO,,, = 0, (4.16) 

which may be compared with the corrected form of that given by Cole (1968). 

N = 70141/(3JI<)47 (4.15) can be reduced to the form, 

2N, + 3NNx + +Nxxx = 0, 

By introducing scaling factors and defining r = i/( - I,,), X = Z / ( S J K ) f ,  and 

(4.17) 

and the no flow results are reproduced exactly in these co-ordinates. 
It should be noted that if the propagation speed C, which is greater than U (  l), 

is chosen then is necessarily negative and propagation occurs in the positive 
x direction. If C is such that C < U(O), however, I,, is positive and propagation 
occurs in the negative x direction. This, of course, corresponds to propagation 
in the positive and negative x directions in the no flow case. 

5. Conclusions 

with velocity c to 

Integrating once with respect to x gives 

The equation (4.15) may be reduced in the steady case of a wave propagating 

T&%TO - 2131c) + roZZZJK = 0. (5.1) 

#I41712 - 2131c70 + T0szJK = 7 (5.2) 

(5.3) 

where A is a constant. Multiplying by vOz and integrating once more gives 

KJ$, = 2131~$j - 141~z +Avo + B. 

This is the familiar equation for cnoidal waves (Lamb 1953). 
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The solution of equation (5.3) may be written as 

with 

409 

(5.4) 

where cn denotes the Jacobian elliptic function and vl, v2, v3 are the roots of the 
equation, 

such that v1 < v2 < v3. 
For the particular case of a solitary wave for which A = B = 0, 

We see that the amplitude of the wave is 

(5.5) 
2'31 c 

[rolrnax = __, 
'41 

which relates the speed of propagation relative to the linearized wave speed and 
the wave amplitude. This is Benjamin's (1962) result. 

It may be demonstrated that the scaling introduced in (4.17) reduces (5.4) 
to the standard result for the case of waves on a stationary surface. The complete 
theory of cnoidal waves thus applies to the case of waves on a shear flow and 
all that is necessary is the computation of the quantities 131, 141 and J for the 
appropriate velocity distribution and wave speed. As noted in $4, the two wave 
speeds associated with the flow then give upstream and downstream propagation 
in a way directly analogous to that in the zero velocity ease. 
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